Buscar mas en este blog

Cargando...

La mecánica cuántica y sus reglas

»
Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de ésta teoría en vez de las de la mecánica clásica. En estadística cuantica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dado. Dichas partículas (como dije antes) son los bosones que, tienden a juntarse.

Los bosones tienen un momento angular n h / 2p, donde n es cero o un entero y h es la constante de Planck. Para bosones idénticos, la función de ondas es siempre simétrica. Si solo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n+½) h/2p y cualquier función de ondas de fermiones idénticos es siempre antisimétrica.

La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.

En un espacio de dos dimensiones es posible que existan partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas se conocen con el nombre de aiones; para aniones idénticos la función de ondas no es simétrica (un cambio de fase de+1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

Debido al principio de exclusión de Pauli es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones).

La condensación de Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7k) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos forman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Este efecto (condensación Bose-Einstein), como ya habréis podido suponer, es llamado así en honor al físico Satyendra Naht Bose (1894-1974) y de Albert Einstein.

Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.
« Anterior--- Inicio ---Siguiente »     Etiquetas:
Comparte con tus amigos



Publicado por Amanda Muñoz

Lista de antónimos Caracter metalico Palabras con BLU Causas de terremotos Dieta hipocalórica hipograsa Colores con J Colores con K Colores con Ñ Colores con Q Colores con i Colores con W Colores con X Animales Cine Colores Espacio Experimentos Fisica Historia Hombre Letras Matematicas Musica Peliculas Plantas Porques Quimica Resumenes Salud y Nutricion Sistemas Tierra Tutti frutti Universo
La mecánica cuántica y sus reglas

Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a re...

Te ayudó este tema? Que otros temas deseas que se desarrollen?

0 comentarios:

Lo mas consultado